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Stochastic Quantization of Time-Dependent
Systems by the Haba and Kleinert Method
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The stochastic quantization method recently developed by Haba and Kleinert is extended
to non-autonomous mechanical systems, in the case of the time-dependent harmonic
oscillator. In comparison with the autonomous case, the quantization procedure in-
volves the solution of a nonlinear, auxiliary equation. Using a rescaling transformation,
the Schrödinger equation for the time-dependent harmonic oscillator is obtained after
averaging of a classical stochastic differential equation.
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1. INTRODUCTION

The fundamental goal of stochastic quantization (Bacciagaluppi, 1999;
Belavkin, 2003; de la Peña and Cetto, 1996; Gaioli et al., 1997; Hooft, 1997;
Namiki, 1982; Namiki, 2000; Olavo, 2000; Torres and Figueiredo, 2003) is to re-
produce the whole content of quantum mechanics by means of classical equations
subjected to random perturbations. Presently, there remains the controversy about
the physical origin of the noise, which is supposed to arise, for instance, from
a fluctuating metrics or from fluctuations of the vacuum electromagnetic field.
In spite of this, stochastic quantization is an attractive alternative for all physi-
cists felling not so comfortable with the epistemological content of the traditional
interpretation of quantum mechanics.

Recently, Haba, and Kleinert (2002) have proposed a new approach for
stochastic quantization, hereafter referred to as the HK method. HK is based di-
rectly on the use of Newton equations with the presence of noise. After introducing
an auxiliary field, defined in terms of the solutions for the stochastic dynamical
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equations, a deterministic partial differential equation is found averaging over all
stochastic processes. This deterministic equation, after a suitable transformation,
yields the Schödinger equation for the mechanical system under consideration.
Solving the Schrödinger equation reproduces the spectrum of the system. In com-
parison with other stochastic quantization methods like Nelson’s stochastic me-
chanics (Nelson, 1967) or the Parisi and Wu method (Damgaard, 1987; Parisi
and Wu, 1982), the HK approach seems to be remarkably concise. Moreover, as
shown in (Haba and Kleinert, 2002), the HK method can be applied to arbitrary
one-dimensional mechanical systems subject to a time-independent potential.

In view of the elegance and conciseness of the HK method, it is valuable to ex-
tend it to more general dynamical systems. Several avenues are open in this regard.
For instance, one can address the generalization of HK to higher dimensionality,
to composite systems, to systems exposed to external electromagnetic fields and
so on. Here we focus on the stochastic quantization of explicitly time-dependent
systems. In fact, as long as we know stochastic quantization methods have not paid
much attention to non-autonomous systems, in spite of the importance of these
for applications. We consider the use of HK for a particular non-autonomous sys-
tem, namely, the time-dependent harmonic oscillator (TDHO), characterized by a
frequency function variable along time (Lewis, 1967). We refrain from listing the
large list of applications of the TDHO, including such several fields as quantum
optics, cosmology, non-linear elasticity and hydrodynamics (see Espinoza, 2000
for a review). Here we limit ourselves to apply HK to this class of systems, showing
that some non-autonomous systems are also amenable to stochastic quantization
via the HK method. We will see that the time-dependence of the frequency can
be eliminated through a rescaling transformation. Other non-autonomous systems
may perhaps also be treated through coordinate transformations, but this possi-
bility is unproven presently. The work presents the first non-autonomous class
of mechanical systems amenable to stochastic quantization by the HK approach,
namely, the TDHO system.

The paper is organized as follows. In Section II, we apply the HK method
to the TDHO equation. In this Section, we both present the HK method with
some more details than in the original reference (Haba and Kleinert, 2002) and
apply it, obtaining a stochastic differential equation simulating the TDHO. In
Section III we obtain the formal solution for this stochastic differential equation.
This formal solution is used to describe the time-evolution of the mother field, one
of the fundamental elements in the HK method. We then derive the Schrödinger
equation associated to the TDHO. Section IV is devoted to the conclusions.

2. STOCHASTIC DIFFERENTIAL EQUATION

Our purpose is to apply the HK method to obtain the quantization of the
TDHO equation,

ẍ + ω2(t) x = 0, (1)
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where ω(t) is the time-dependent frequency. The HK method consists of three
steps, (a) postulate of a classical, stochastic equation, which reduces to the Newton
equation of the system in the limit of zero noise; (b) introduction of an auxiliary
field (the mother field) defined in terms of the solutions of the original, stochastic
equation; (c) averaging over stochastic processes, yielding a deterministic equation
equivalent to the Schrödinger equation. For the TDHO, we choose the stochastic
equation

ṙ = � × r
ρ2

+ ρ̇

ρ
r + f (t) n, (2)

where r = (x, y, 0) and � = (0, 0,�), for constant �, and where n = (1, 1, 0)/
√

2
is a unitary vector in the diagonal direction in the plane. The function ρ is any
particular solution for the Pinney’s (Pinney, 1950) equation,

ρ̈ + ω2(t)ρ = �2

ρ3
, (3)

where ω(t) is the time-dependent frequency characterizing the TDHO. Pinney
equations also appear in other contexts like Bose–Einstein condensate dynamics
(Haas, 2002) or non-relativistic charged particle motion (Haas and Goedert, 1999).
It is convenient to take � �= 0 so that ρ never vanish. Finally, f (t) is a stochastic
variable with zero mean over statistical processes,

〈f (t)〉 = 0 , (4)

and with correlation function

〈f (t)f (t ′)〉 = h δ(t − t ′), (5)

so there is a white noise stochastic process.
The choice for the classical dynamical equation is justified because, treating

formally f as an ordinary function, the second-order equation obtained from
(2) is

r̈ + ω2(t) r =
(

ḟ + ρ̇

ρ
f

)
n + f

ρ2
� × n , (6)

which reduces to the planar isotropic TDHO when f = 0. Latter on, as we shall
see, the HK method proposes a dimensional reduction from 2D to 1D, so that we
will recover the one-dimensional TDHO.

To proceed, let us introduce the well-known rescaling (Munier et al., 1981),

X = x/ρ , Y = y/ρ , T =
∫ t

0
dt ′/ρ2(t ′). (7)

With the new variables, we obtain from (2) the rescaled stochastic equation

dR
dT

= � × R + F (T ) n, (8)



612 Haas

where R = (X, Y, 0) and F (T ) is defined by

F (T ) = ρ(t) f (t). (9)

Since f is a stochastic function, so is F . The statistical properties of F follows
from (4)–(5). The new stochastic function has zero mean,

〈F (T )〉 = 0, (10)

and has correlation function

〈F (T )F (T ′)〉 = h δ(T − T ′), (11)

defining a white noise.
Equation (10) is an immediate consequence of the zero mean of f . On the

other hand, (11) is demonstrated in the following way. By the definition of F , we
have

〈F (T )F (T ′)〉 = ρ(t)ρ(t ′)〈f (t)f (t ′)〉, (12)

where the transformed times are

T =
∫ t

0

dt ′′

ρ2(t ′′)
, T ′ =

∫ t ′

0

dt ′′

ρ2(t ′′)
. (13)

From (12) and the correlation function in terms of the original variables, we obtain

〈F (T )F (T ′)〉 = hρ2(t) δ(t − t ′). (14)

This gives an expression for the correlation function of F in terms of the original
time variable. Our objective is to show that the right-hand side of (11) coincides
with this.

It turns out that

δ(T − T ′) = δ

(∫ t

t ′

dt ′′

ρ2(t ′′)

)
, (15)

using the definition of rescaled time. The right-hand side of the last equation can
be handled with the following property of the delta function,

δ(ϕ(t)) =
∑

i

δ(t − ti)

|ϕ′(ti)| , (16)

for an arbitrary function ϕ and for ϕ(ti) = 0, ϕ′(ti) �= 0. The sum (16) is over the
zeros of the function ϕ. Applying (16) to (15), we get

δ(T − T ′) = ρ2(t) δ(t − t ′) , (17)

thus showing the equivalence between (11) and (14) as we desired.
In the new variables, Equation (8) is the same as that used by HK in the case

of the time-independent harmonic oscillator (see Eq. (3) of Haba and Kleinert
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(2002)). Hence, our remaining task is to repeat the procedure by HK and map
our conclusions to the original, non-rescaled variables. We also offer some extra
details on the necessary calculations, not present in the original work of HK. In
particular, we consider in more detail the expansion procedure of HK.

3. MOTHER FIELD AND STOCHASTIC QUANTIZATION

We can trivially obtain the formal solution for Eq. (8) as follows. Thinking the
stochastic function F as an ordinary function, we easily obtain the linear invariants

X0 = X cos �T + Y sin �T − 1√
2

∫ T

0
dT ′ F (T ′)(cos �T ′ + sin �T ′), (18)

Y0 = −X sin �T + Y cos �T − 1√
2

∫ T

0
dT ′ F (T ′)(cos �T ′− sin �T ′) (19)

for the dynamical equations. In other words, both X0 and Y0 are constant along tra-
jectories and can be interpreted as the initial conditions for X and Y , respectively.
Solving (18) and (19) for X and Y we obtain

X = X0 cos �T − Y0 sin �T + cos �T√
2

∫ T

0
dT ′F (T ′)(cos �T ′ + sin �T ′)

− sin �T√
2

∫ T

0
dT ′F (T ′)(cos �T ′ − sin �T ′), (20)

Y = Y0 cos �T + X0 sin �T + cos �T√
2

∫ T

0
dT ′F (T ′)(cos �T ′ − sin �T ′)

+ sin �T√
2

∫ T

0
dT ′F (T ′)(cos �T ′ + sin �T ′). (21)

We can use the exact solution to expand X and Y around T = 0. Inte-
grating (11) we get the estimate F 2(�T ) ∼ h/�T for small �T . Therefore,∫ �T

0 F (T )dT ∼ √
h�T . Using this and expanding the exact solution, the result

is

X = X0 − �Y0�T + 1√
2

∫ �T

0
dTF (T ) + O((�T )3/2), (22)

Y = Y0 + �X0�T + 1√
2

∫ �T

0
dTF (T ) + O((�T )3/2). (23)

Hence we deal with an expansion in powers of ε = (�T )1/2. More precisely,

X = X0 + εα1 + ε2α2 + 0(ε3), (24)
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Y = Y0 + εβ1 + ε2β2 + 0(ε3), (25)

where

εα1 = εβ1 = 1√
2

∫ � T

0
dTF(T ), (26)

ε2α2 = −�Y0�T, ε2β2 = �X0�T. (27)

Following HK, the next step is the introduction of an auxiliary field, depend-
ing on the solution for the stochastic equation (8). Let us define a time-independent
mother field U(R) = (U1(R), U2(R)) supposed to satisfy the Cauchy–Riemann
conditions

∂U1

∂X
= ∂U2

∂Y
,

∂U1

∂Y
= −∂U2

∂X
. (28)

At time T , we can construct a time-dependent field UT (R, T ) which at T = 0
equals U(R) and which is given in terms of the flow of the stochastic differential
Eq. (8),

UT (R, T ) = U(R(T )), (29)

where R(T ) evolves in time according to (8). Using (24)–(25), we can expand the
time-dependent field around T = 0 to obtain

UT (R,�T ) = U(R) + �T (� × R · ∇̄)U(R) +
∫ �T

0
dTF (T )(n · ∇̄)U(R)

+ 1

2

∫ �T

0
dT

∫ �T

0
dT ′F (T )F (T ′)(n · ∇̄)2 U(R)

+ 0((�T )3/2). (30)

where ∇̄ is the gradient operator in R coordinates.
By construction, UT (R, T ) is a stochastic function. However, an ordinary

function Ū(R, T ) can be build after performing the last step in the HK method,
i.e., averaging over stochastic processes,

Ū(R, T ) = 〈UT (R, T )〉. (31)

Averaging (30) and taking into account the statistics of F , we obtain

∂Ū
∂T

= Ĥ Ū, (32)

with the time evolution operator

Ĥ = ((� × R) · ∇̄) + h

2

(
n · ∇̄)2

. (33)
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As shown by HK, the averaged mother field is harmonic for all times.
Of course most of the steps followed until now are precisely the same as those

presented at (Haba and Kleinert, 2002), in connection with the time-independent
harmonic oscillator. The non-trivial content of this work is the use of a coordinate
transformation for the treatment of the TDHO by stochastic quantization. This
should be not underestimated, since no other time-dependent system was ever
shown to be amenable to HK quantization. Moreover, we think that showing the
details of the calculations is necessary to provide a precise translation from the
time-independent to the time-dependent scenarios.

Equation (32) is equivalent to a Schrödinger equation after restricting to the
Y = 0 line. To show this, notice that the averaging process preserves the harmonic
property (28). Using the Cauchy–Riemann properties, we can rewrite (32) as

∂Ū1

∂T
= −�

(
X

∂Ū2

∂X
+ Y

∂Ū1

∂X

)
− h

2

∂2Ū2

∂X2
, (34)

∂Ū2

∂T
= �

(
X

∂Ū1

∂X
− Y

∂Ū2

∂X

)
+ h

2

∂2Ū1

∂X2
. (35)

Restricting to Y = 0 and defining the complex field

ψ̄(X, T ) = exp

(
−ω X2

2h
− iω T

2

) (
Ū1(X, 0, T ) + iŪ2(X, 0, T )

)
, (36)

we obtain the Schrödinger equation for a one-dimensional time-independent har-
monic oscillator,

ih
∂ψ̄

∂T
=

(
−h2

2

∂2

∂X2
+ �2X2

2

)
ψ̄, (37)

with frequency �.
To obtain the quantization of the TDHO, consider the transformation

ψ = ρ−1/2 exp

(
iρ̇ x2

2hρ

)
ψ̄ , (38)

where ρ is a solution for the Pinney equation (3). Using the Pinney equation and
(37) and inverting the rescaling (7), we get

ih
∂ψ

∂t
=

(
−h2

2

∂2

∂x2
+ ω2(t)x2

2

)
ψ. (39)

The solution of the quantum one-dimensional TDHO (39) can be obtained,
for instance, obtaining a particular solution for the Pinney equation and applying
the Lewis–Riesenfeld method (Lewis and Riesenfeld, 1969).
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4. CONCLUSION

We have obtained the quantization of the TDHO using the HK method. Our
approach relies on a rescaling transformation, which removes the explicit time-
dependence from the classical stochastic Newtonian equation. We may observe
that, since the quantization procedure depends on the function ρ(t), which is
any arbitrary solution for the Pinney equation, we have in fact an infinite family
of quantizations. For each initial condition of the Pinney equation we have a
different stochastic quantization. We have presented a dictionary relating the time-
dependent and the time-independent scenarios, namely, the coordinate transform,
the wave-function transform and the correlation functions for both cases.

Since, essentially, our procedure was based on a rescaling transformation, it
remains the question of what other classes of explicitly time-dependent mechanical
systems are amenable to the HK method. We have not shown, in particular, that
arbitrary time-dependent potential functions can be treated by HK. In our opinion
this is an important issue concerning the HK approach. The fact that the TDHO
can be handled by a coordinate transformation is a non-trivial fact that singles out
the special role of this system. No nonlinear time-dependent mechanical system
was, until now, shown to be tractable by HK. In addition, we have not touched
upon the measurement theory associated to HK or the physical origin of the noise
(as in most stochastic quantization methods). Finally, in the case of HK there are
other possible and necessary extensions, like consideration of higher dimensional
cases, many particle systems and the inclusion of general electromagnetic fields.
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